

Grundlagen der Elektrotechnik

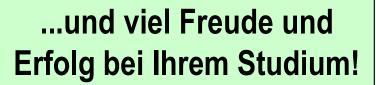
Prof. Dr. Frank Palme

Einführung
Wintersemester 2025/26

Willkommen!

Herzlich willkommen an der Hochschule München...

Informationen im Internet


- Moodle-Kurs
- palme.userweb.mwn.de

Sie erreichen mich

- Sprechstunde: Dienstag 12:00 13:00 Uhr, online auf Moodle bzw. R1.099
- telefonisch: 089 / 1265-1123 (bzw. über Handy)
- nur wenn nicht anders möglich per Mail: frank.palme@hm.edu

Skripten und Prüfungen

• im Internet (s.o.) und als Skript (Fachschaft)

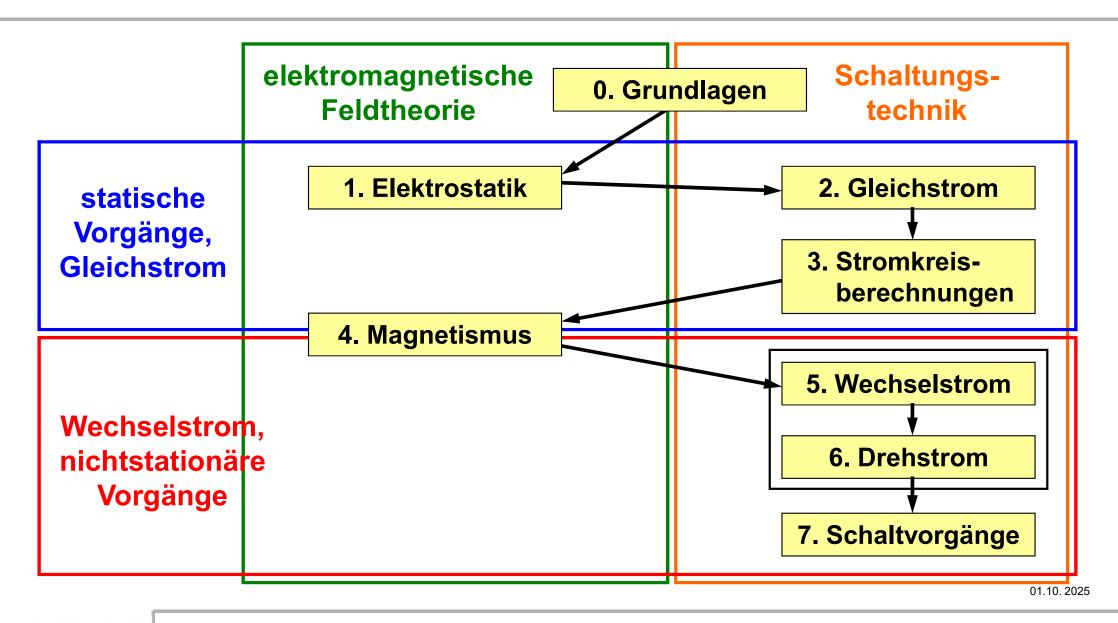
01.10, 2025

Grundlagen der Elektrotechnik

Heutige Vorlesung: Einführung, Grundlagen

Organisatorisches

Themen der Vorlesung


Systematik und Gliederung

0. Grundlagen

- Physikalische Größen
 - Messtechnik
 - Internationales Einheitensystem
 - Skalare und Vektoren

Themen der Vorlesung – Systematik

Themen der Vorlesung – Gliederung

0. Grundlagen

Physikalische Größen, Messtechnik, Internationales Einheitensystem, Skalare und Vektoren

1. Elektrostatik

Ladungen, Kräfte, elektrische Felder, Energie, Potential, Spannung, Kapazität, Kondensatoren

2. Gleichstrom

Stromstärke, Stromdichte, Ohmsches Gesetz, Widerstand und Leitwert, Temperaturabhängigkeit des Widerstands

3. Stromkreisberechnungen

Kirchhoffsche Gesetze, Strom- und Spannungsmessung, Zweipoltheorie, Energie, Leistung, Anpassung, Wirkungsgrad

4. Magnetismus

• Magnetisches Feld, Flussdichte, Permeabilität, Kräfte, Durchflutung, magnetischer Kreis, Induktion, Induktivitäten

5. Wechselstrom

Sinusförmige Spannungen und Ströme, komplexe Wechselstromrechnung, Zeigerdiagramme, Wirk- und Blindleistung

6. Drehstrom

• Dreiphasensysteme, Stern-/Dreieckschaltung, komplexe Leistung im Drehstromnetz, Blindleistungskompensation

7. Schaltvorgänge

• Differentialgleichungen, Schaltvorgänge an Kapazitäten und Induktivitäten

Physikalische Größen – Messtechnik

Physikalische Größe

- messbare Eigenschaft eines physikalischen Objekts
- charakterisiert durch Zahlenwert und Maßeinheit sowie Vorstellung über Messunsicherheit

Messen

• Beobachten und Quantifizieren der physikalischen Größe durch Vergleich mit Maßeinheit

Maßeinheit

- Definition durch
 - Maßverkörperung (traditionell)
 Beispiel: Urmeter (Platin-Iridium Prototyp, BIPM 1889: 1 m ± 0,1 μm typ.)
 - Rückführung auf Fundamentalkonstanten (bevorzugt)
 Beispiel: The metre is the length of the path travelled by light in vacuum during a time interval of 1/299792458 of a second (BIPM 1983)

Physikalische Größen – Internationales Einheitensystem

Internationales Einheitensystem (SI, Système International d'Unités)

- Einführung 1960 durch BIPM (Bureau international des poids et mesures, Paris)
- mittlerweile am weitesten verbreiteter weltweiter Standard
- jeweils nationale Umsetzung. BRD: PTB (Physikalisch-Technische Bundesanstalt)

SI-Basisgrößen

• 7 unabhängige SI-Basisgrößen (seit 2019 alle über Fundamentalkonstanten – auch Masse)

	Gebiet	Basisgröße	Symbol	Basiseinheit	Symbol	
	Mechanik	Länge	I	Meter	m	MKS
		Masse	m	Kilogramm	kg	(1889 bis 1954)
		Zeit	t	Sekunde	S	` '
	Elektrotechnik	Stromstärke	I	Ampere	Α	MKSA (bis 1960)
Γ	Thermodynamik	Temperatur	T	Kelvin	K	
	Chemie	Stoffmenge	n	Mol	mol	SI (seit 1960)
	Optik	Lichtstärke	I_{ν}	Candela	cd	,

Stromstärke: zentrale elektrotechnische Basisgröße

Physikalische Größen – Internationales Einheitensystem

abgeleitete SI-Größen

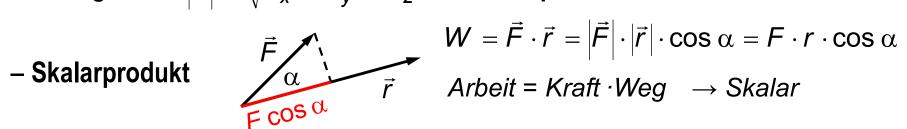
- **kohärente** Ableitung aus SI-Basisgrößen (keine Umrechungsfaktoren)
- 22 davon mit eigener Bezeichnung. Beispiel: Hertz (Hz), Newton (N), Volt (V)

				SI-Basisgrößen				abgeleitete SI-Größen					
abgeleitete Größe	Definition		Einheit	Masse	Länge	Zeit	Stromstärke	Kraft	Energie	Leistung	Ladung	Spannung	Widerstand
Kraft	Masse • Beschleunigung = Masse • Länge / Zeit ²	F	$N = kg \cdot m/s^2$	V	V	$\overline{\mathbf{V}}$		\times	\times	\times	\times	\times	\times
Energie	Kraft • Weg = Masse • Länge² / Zeit²	W	$J = N \cdot m = V \cdot A \cdot s$		V			V	\times	\times	\times	\times	\times
Leistung	Energie / Zeit	Р	$W = J/s = V \cdot A$			V			V	\times	\times	\times	\times
Ladung	Stromstärke • Zeit	Q	C = As			V	V				\times	\times	\times
Spannung	Leistung / Stromstärke	U	V = W/A = J/C				V			V		\times	$\overline{\times}$
Widerstand	Spannung / Stromstärke	R	$\Omega = V/A$				$\overline{\mathbf{V}}$					☑	$\overline{\times}$

SI-Vorsätze zur Dezimalskalierung

• **Dezimalfaktoren** 10^n (ganzzahliges n) halten Größenangaben in einer praktikablen Größenordnung. Beispiele: kV = 10^3 V, M Ω = 10^6 Ω , mA = 10^{-3} A, μ F = 10^{-6} F, nC = 10^{-9} C

Physikalische Größen – Skalare und Vektoren


Skalar

• Physikalische Größe charakterisiert durch **Betrag** (Zahlenwert • Einheit) $m = 1 \, \text{kg}$

Vektor

- Physikalische Größe charakterisiert durch **Betrag** (Zahlenwert Einheit) und **Richtung** im Raum. Beispiele: Kraft \vec{F} , Geschwindigkeit \vec{v} , Feldstärke \vec{E}
- Rechenregeln

- Betrag
$$F = |\vec{F}| = \sqrt{F_x^2 + F_y^2 + F_z^2}$$
 - Multiplikation mit Skalar $\vec{F} = m \cdot \vec{a}$

$$W = \vec{F} \cdot \vec{r} = |\vec{F}| \cdot |\vec{r}| \cdot \cos \alpha = F \cdot r \cdot \cos \alpha$$

Vektorprodukt

Vektorprodukt
$$\vec{M} = \vec{F} \times \vec{r} \rightarrow Vektor$$

$$\vec{M} \perp \vec{F}, \ \vec{M} \perp \vec{r}, \ \vec{M} \perp \vec{r} \qquad \vec{M} = \vec{F} \times \vec{r} = \begin{pmatrix} F_x \\ F_y \\ F_z \end{pmatrix} \times \begin{pmatrix} r_x \\ r_y \\ F_z \end{pmatrix} \times \begin{pmatrix} r_x \\ r_y \\ r_z \end{pmatrix} = \begin{pmatrix} F_y r_z - F_z r_y \\ F_z r_x - F_x r_z \\ F_x r_y - F_y r_x \\ F_x r_y - F_y r_x \\ F_y r_y - F_y r_x \\ F_y r_y - F_y r_y \\ F_y r_y$$

$$\vec{M} = \vec{F} \times \vec{r} \rightarrow Vektor$$

$$\vec{M} \perp \vec{F}, \ \vec{M} \perp \vec{r}$$

$$=\left(egin{array}{c} F_x \ F_y \ F_- \end{array}
ight) imes\left(egin{array}{c} r_x \ r_y \ r_- \end{array}
ight)=$$

Elektrostatik – Ladungen, Kräfte und Felder

Heutige Vorlesung: Ladungen, Kräfte, Felder

Elektrische Ladungen

- Ursprung
- Kräfte zwischen Ladungen → Coulombsches Gesetz

Elektrisches Feld

- im Vakuum
- in der Materie → Verschiebungsdichte

Berechung von Ladungen über die Verschiebungsdichte

→ Satz von Gauß

