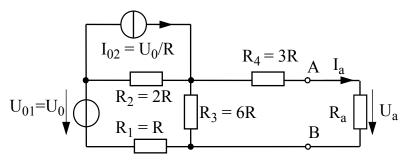
Name:Vorname:					Se	ite 1	von 8	
Hochschule München, FK 03 Grundlagen der Elektrotechnik WS 2008/2009)9			
Matrikelnr.: Hörsaal:	Platz:		Stu	d.–G1	ruppe	:		
Zugelassene Hilfsmittel: beliebige eigene Aufgabensteller: Buch, Geng, Göhl, Hessel, Küpper, Stadler, Tinkl Arbeitszeit 90 Minuten		A	1	2	3	4	Σ	N
Aufgabe 1 (ca. 16 Punkte)								
Hinweis: Falls Sie die ersten beiden Unterpunkte nicht lösen können, beginnen Sie direkt mit dem dritten Unterpunkt! Ein Weicheisenkern (konstanter Querschnitt A, mittlere Länge ℓ_E) besitzt an seiner Unterseite einen Luftspalt (Länge ℓ_L). Im Luftspalt kann von einem homogenen Magnetfeld ausgegangen werden. Magnetische Streuung sowie eine mögliche Sättigung des Kerns seien vernachlässigbar.			\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	L _E		$\ell_{\rm E} = 2$ $\ell_{\rm L} = 0$	500 3000 220 r 0,5 m 1 cm ²	nm ım
 1.1 Berechnen Sie die magnetischen Widerstände Razeichnen Sie das elektrische Ersatzschaltbild des zeichnen Sie die magnetische Flussdichte B im Flussdichte stellt sich bei einem Spulenstrom von 	magnetische	ls Fun	ises.					


Nam	e:Vorname:	Seite 2 von 8
Win das	en folgenden Unterpunkten beträgt die Flussdichte im Luftspalt $B=1,2$ T. Eindung, $N=1$) fällt senkrecht nach unten aus dem Luftspalt heraus. Der untere Flusgnetfeld bereits verlassen. Die Fallgeschwindigkeit (konstante Endgeschwinkräftegleichgewicht: $F_{magn}=F_g$) beträgt $v=6$ mm/s.	Rand der Schleife hat
1.3	Berechnen Sie die in der Drahtschleife induzierte Spannung. (Ersatzwert: U = 0,2 mV) X	X X X X B = 1,2 T X X X X X A X X X X X X X X X X X X X X
1.4	Welcher Strom fließt in der Drahtschleife? Tragen Sie die Richtung des Stromrichtung) in die Abbildung ein.	omflusses (technische (Ersatzwert: I = 1 A)
1.5	Der in Unterpunkt 1.4 berechnete Stromfluss im Magnetfeld bewirkt eine oberen Rand der Drahtschleife. Wie groß ist diese Kraft? In welche Richtung welche Rich	\mathcal{E}
1.6	Berechnen Sie die Masse m der Drahtschleife. (Erdbeschleunigung: g = 9,81 m	//s²)

Name	Vorname:	Seite 3 von 8				
Aufgabe 2 (ca. 18 Punkte) In einer Werkshalle sind die folgenden drei Drehstromgeräte an einem symmetrischen Drehstromsystem mit 230 V Phasenspannung (Sternspannung) und einer Frequenz von 50 Hz angeschlossen:						
1. Ein Heizradiator mit drei ohmschen Heizwiderständen $R = 100 \Omega$ in Sternschaltung 2. Ein Motor mit einer Wirkleistung $P_2 = 4$ kW und einer Blindleistung $Q_2 = 3$ kvar in Sternschaltung 3. Ein Motor mit einer Scheinleistung $S_3 = 20$ kVA und einem $\cos \varphi_3 = 0,6$ in Dreieckschaltung						
	Zeichnen Sie die Gesamtschaltung ohne Drehstromquelle. (Es sollen alle eingezeichneten Leiter (Phasenleiter und Neutralleiter) korrekt eingezeichnet v					
L ₁ -						
L ₃ -						
	Bestimmen Sie die Heizleistung P ₁ des Radiators, die Scheinleistung S ₂ vo Wirkleistung P ₃ und die Blindleistung Q ₃ von Motor 3.	n Motor 2 sowie die				

Nam	ne:Vorname:	Seite 4 von 8
2.3	Bestimmen Sie die Wirkleistung P, die Blindleistung Q und Scheinleistung Werkshalle. (Ersatzwerte: $P = 15 \text{ kW}$, $Q = 20$	_
2.4	Mit drei Kompensationskondensatoren in Dreieckschaltung soll Blindleistungskompensation in der Werkshalle erreicht werden. Ergänzen Sie Teilaufgabe 2.1 und berechnen Sie die notwendigen Kapazitäten der Kondensato	
2.5	Ermitteln Sie den Effektivwert des Stromes in jedem der 3 Außenleiter der Dr Werkshalle (Außenleiterstrom) nach der Kompensation.	rehstromleitung zur
		1 1 6
2.6	Die Heizleistung des Radiators soll nun durch eine Dreieckschaltung der Heizwi Wert P ₁ ' vergrößert werden. Wie groß ist P ₁ '? Müssen nach dieser Schaltungsm der Kompensationskondensatoren für vollständige Kompensation geändert werde	aßnahme die Werte

Aufgabe 3 (ca. 15 Punkte)

Im nachstehenden Bild ist eine Schaltung gegeben, bei der alle auftretenden Zweipole in Abhängigkeit von R und U_0 angegeben werden können. Die dargestellte Schaltung soll links der Klemmen A-B in eine äquivalente Ersatzspannungsquelle mit den Kenngrößen U_{qe} (Leerlaufspannung) und R_{ie} (Innenwiderstand) umgeformt werden.

3.1 Berechnen Sie in Abhängigkeit von R den Ersatzinnerwiderstand R _{ie} links der Klemmen A-I	3.1	Berechnen Sie in Abhängigkeit	von R den Ersatzinnerwiders	stand R _{ie} links der Klemmen A-F
---	-----	-------------------------------	-----------------------------	---

(Ersatzwert: 10R)

3.2	Berechnen Sie in Abhängigkeit von U_0 die Ersatzleerlaufspannung U_{qe} links der Klemmen A-B
	(Hinweis: Die Schaltung kann vereinfacht werden, indem R ₂ und I ₀₂ als reale Stromquelle
	aufgefasst und zunächst in eine reale Spannungsquelle umgeformt werden.) (Ersatzwert: $4U_0$)

Nan	ne:
3.3	An obiger Schaltung werden zwei Messungen durchgeführt: 1. Messung: Im Kurzschlussfall fließt ein Strom von $I_a = I_K = 750$ mA zwischen den Klemmen A und B. 2. Messung: Bei einem Lastwiderstand $R_a = 10~\Omega$ fließt ein Laststrom $I_a = 500$ mA. Bestimmen Sie aus diesen beiden Messungen die Zahlenwerte der Kenngrößen U_{qe} (Leerlaufspannung) und R_{ie} (Innenwiderstand) der Ersatzschaltung links der Klemmen A-B. (Ersatzwerte: $U_{qe} = 30V$, $R_{ie} = 40~\Omega$)
	•
3.4	Bestimmen Sie die Zahlenwerte R und U ₀ der Originalschaltung.
3.5	Welche maximale Leistung könnte bei Veränderung des Widerstandes R_a an den Klemmen A-B entnommen werden? Wie groß wäre in diesem Fall die Spannung U_a ?
1	

Nam	e:Vorname:	Seite 7 von 8
Auf	rabe 4 (ca. 16 Punkte)	
wie die Para Effe	ben sei ein lineares RLC-Netzwerk. Es werde dargestellt an einer Spannungsquelle betrieben, eine sinusförmige Spannung $u(t)$ abgibt. Die meter der Spannung $u(t)$ (d.h. Amplitude bzw. trivwert, Nullphase und Frequenz) sowie alle lementwerte finden sich im nebenstehenden Bild. $u(t) = 230 \text{V} \sqrt{2} \sin \left(\frac{1}{2} \right)$	Werte: $R_1 = 50 \Omega$ $C = 10 \mu F$ L = 50 mH $R_2 = 100 \Omega$ f = 159,155 Hz
4.1	Geben Sie den komplexen Effektivwert \underline{U} für die Spannung $u(t)$ an.	(Ersatzwert: <u>U</u> =(170+ <i>j</i> 170)V
4.2	Berechnen Sie den komplexen Effektivwert \underline{I} des Gesamtstroms $i(t)$.	(Ersatzwert: <u>I</u> =(2,2+j0,8)A)

Name	: :	Vorname:	Seite 8 von 8
4.3	Geben Sie eine Gleichung fü	ür den zeitabhängigen Gesa	mtstrom in der Form $i(t) = \hat{i} \sin(\omega t + \varphi_i)$ an.
4.4			enommene Scheinleistung <i>S</i> , Wirkleistung <i>P</i> chst eine geeignete komplexe Leistung).
4.5	Welche veränderte Frequenz damit der resultierende Gesa		e sinusförmige Spannung $u(t)$ besitzen, nung $u(t)$ in Phase wären?
	Viel Erfolg!		